Немного теории.
Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.
Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.
Неполные квадратные уравнения бывают трёх видов:
1) ax2+c=0, где \( c \neq 0 \);
2) ax2+bx=0, где \( b \neq 0 \);
3) ax2=0.
Рассмотрим решение уравнений каждого из этих видов.
Так как \( c \neq 0 \), то \( -\frac{c}{a} \neq 0 \)
Если \( -\frac{c}{a}>0 \), то уравнение имеет два корня.
Значит, неполное квадратное уравнение вида ax2+bx=0 при \( b \neq 0 \) всегда имеет два корня.
Неполное квадратное уравнение вида ax2=0 равносильно уравнению x2=0 и поэтому имеет единственный корень 0.
Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.
Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.
Решим квадратное уравнение ax2+bx+c=0
Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\( x^2+\frac{b}{a}x +\frac{c}{a}=0 \)
\( x^2+2x \cdot \frac{b}{2a}+\left( \frac{b}{2a}\right)^2 = \left( \frac{b}{2a}\right)^2 — \frac{c}{a} \Rightarrow \) \( \left( x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} — \frac{c}{a} \Rightarrow \left( x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \( x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \( x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)
Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \( x=-\frac{b}{2a} \).
3) Если DТаким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.
Приведённое квадратное уравнение ax2-7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.
Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
В уравнении квадратичной функции:
a – старший коэффициент
b – второй коэффициент
с — свободный член.
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Точки, обозначенные зелеными кружками – это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции
при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.
Итак, мы заметили:
Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.
Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.
Второй параметр для построения графика функции – значения х, в которых функция равна нулю, или нули функции. На графике нули функции — это точки пересечения графика функции с осью ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .
В случае квадратичной функции нужно решить квадратное уравнение .
В процессе решения квадратного уравнения находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если ,то график функции выглядит как-то так:
2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если ,то график функции выглядит примерно так:
3. Если ,то уравнение имеет два решения, и, следовательно, квадратичная парабола имеет две точки пересечения с осью ОХ:
,
Если ,то график функции выглядит примерно так:
Следующий важный параметр графика квадратичной функции – координаты вершины параболы:
Прямая, прохдящая через вершину параболы параллельно оси OY является осью симметрии паработы.
И еще один параметр, полезный при построении графика функции – точка пересечения параболы с осью OY.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Формулы сокращенного умножения
Формулы сокращенного умножения.
Цели:
— Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.
— Применение формул сокращенного умножения при решении примеров.
Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения. Формулы сокращенного умножения нужно знать наизусть.
Пусть а, b R. Тогда:
1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a + b)2 = a2 + 2ab + b2
2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.
(a — b)2 = a2 — 2ab + b2
3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.
a2 — b2 = (a -b) (a+b)
4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.
(a — b)3 = a3 — 3a2b + 3ab2 — b3
6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.
a3 + b3 = (a + b) (a2 — ab + b2)
7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.
a3 — b3 = (a — b) (a2 + ab + b2)
Применение формул сокращенного умножения при решении примеров.
Пример 1.
Вычислить
а) (40+1)2
б) 982
Решение:
а) Используя формулу квадрата суммы двух выражений, имеем
(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681
б) Используя формулу квадрата разности двух выражений, получим
982 = (100 – 2)2 = 1002 — 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604
Пример 2.
Вычислить
Решение
Используя формулу разности квадратов двух выражений, получим
Пример 3.
Упростить выражение
(х — у)2 + (х + у)2
Решение
Воспользуемся формулами квадрата суммы и квадрата разности двух выражений
(х — у)2 + (х + у)2 = х2 — 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2