Немного теории.

Числа a, b и c — коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b — вторым коэффициентом и число c — свободным членом.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Неполные квадратные уравнения бывают трёх видов:
1) ax2+c=0, где \( c \neq 0 \);
2) ax2+bx=0, где \( b \neq 0 \);
3) ax2=0.

Рассмотрим решение уравнений каждого из этих видов.

Так как \( c \neq 0 \), то \( -\frac{c}{a} \neq 0 \)

Если \( -\frac{c}{a}>0 \), то уравнение имеет два корня.

Значит, неполное квадратное уравнение вида ax2+bx=0 при \( b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax2=0 равносильно уравнению x2=0 и поэтому имеет единственный корень 0.

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax2+bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\( x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

\( x^2+2x \cdot \frac{b}{2a}+\left( \frac{b}{2a}\right)^2 = \left( \frac{b}{2a}\right)^2 — \frac{c}{a} \Rightarrow \) \( \left( x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} — \frac{c}{a} \Rightarrow \left( x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \( x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \( x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \( x=-\frac{b}{2a} \).
3) Если DТаким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Приведённое квадратное уравнение ax2-7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

В уравнении квадратичной функции:

a – старший коэффициент

b – второй коэффициент

с — свободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:

Точки, обозначенные зелеными кружками – это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:

Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции при любых значениях остальных коэффициентов.

График функции имеет вид:

Для нахождения координат базовых точек составим таблицу:

Обратите внимание, что график функции симметричен графику функции относительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0, то ветви параболы напрaвлены вверх.

Если старший коэффициент a<0, то ветви параболы напрaвлены вниз.

Второй параметр для построения графика функции – значения х, в которых функция равна нулю, или нули функции. На графике нули функции — это точки пересечения графика функции с осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение .

В случае квадратичной функции нужно решить квадратное уравнение .

В процессе решения квадратного уравнения находим дискриминант: , который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если ,то уравнение не имеет решений, и, следовательно, квадратичная парабола не имеет точек пересечения с осью ОХ. Если ,то график функции выглядит как-то так:

2. Если ,то уравнение имеет одно решение, и, следовательно, квадратичная парабола имеет одну точку пересечения с осью ОХ. Если ,то график функции выглядит примерно так:

3. Если ,то уравнение имеет два решения, и, следовательно, квадратичная парабола имеет две точки пересечения с осью ОХ:

,

Если ,то график функции выглядит примерно так:

Следующий важный параметр графика квадратичной функции – координаты вершины параболы:

Прямая, прохдящая через вершину параболы параллельно оси OY является осью симметрии паработы.

И еще один параметр, полезный при построении графика функции – точка пересечения параболы с осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль: .

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны на рисунке:

Формулы сокращенного умножения

Формулы сокращенного умножения.

Цели:

— Изучение формул сокращенного умножения: квадрата суммы и квадрата разности двух выражений; разности квадратов двух выражений; куба суммы и куба разности двух выражений; суммы и разности кубов двух выражений.

— Применение формул сокращенного умножения при решении примеров.

Для упрощения выражений, разложения многочленов на множители, приведения многочленов к стандартному виду используются формулы сокращенного умножения. Формулы сокращенного умножения нужно знать наизусть.

Пусть а, b R. Тогда:

1. Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a + b)2 = a2 + 2ab + b2

2. Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

(a — b)2 = a2 — 2ab + b2

3. Разность квадратов двух выражений равна произведению разности этих выражений и их суммы.

a2 — b2 = (a -b) (a+b)

4. Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

(a + b)3 = a3 + 3a2b + 3ab2 + b3

5. Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

(a — b)3 = a3 — 3a2b + 3ab2 — b3

6. Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

a3 + b3 = (a + b) (a2 — ab + b2)

7. Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

a3 — b3 = (a — b) (a2 + ab + b2)

Применение формул сокращенного умножения при решении примеров.

Пример 1.

Вычислить

а) (40+1)2

б) 982

Решение:

а) Используя формулу квадрата суммы двух выражений, имеем

(40+1)2 = 402 + 2 · 40 · 1 + 12 = 1600 + 80 + 1 = 1681

б) Используя формулу квадрата разности двух выражений, получим

982 = (100 – 2)2 = 1002 — 2 · 100 · 2 + 22 = 10000 – 400 + 4 = 9604

Пример 2.

Вычислить

Решение

Используя формулу разности квадратов двух выражений, получим

Пример 3.

Упростить выражение

(х — у)2 + (х + у)2

Решение

Воспользуемся формулами квадрата суммы и квадрата разности двух выражений

(х — у)2 + (х + у)2 = х2 — 2ху + у2 + х2 + 2ху + у2 = 2х2 + 2у2

Рубрики: Статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *